首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1080篇
  免费   214篇
  国内免费   424篇
测绘学   52篇
大气科学   58篇
地球物理   144篇
地质学   1011篇
海洋学   117篇
天文学   28篇
综合类   50篇
自然地理   258篇
  2024年   6篇
  2023年   13篇
  2022年   38篇
  2021年   56篇
  2020年   63篇
  2019年   75篇
  2018年   63篇
  2017年   50篇
  2016年   65篇
  2015年   60篇
  2014年   73篇
  2013年   95篇
  2012年   90篇
  2011年   91篇
  2010年   77篇
  2009年   87篇
  2008年   70篇
  2007年   69篇
  2006年   80篇
  2005年   76篇
  2004年   65篇
  2003年   68篇
  2002年   47篇
  2001年   32篇
  2000年   37篇
  1999年   42篇
  1998年   26篇
  1997年   18篇
  1996年   14篇
  1995年   19篇
  1994年   12篇
  1993年   11篇
  1992年   1篇
  1991年   11篇
  1990年   6篇
  1989年   2篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1977年   1篇
排序方式: 共有1718条查询结果,搜索用时 31 毫秒
81.
巴嘎德尔基岩体位于中祁连山西段的野马南山地区,主要由钾长花岗岩和二长花岗岩组成.LA-ICP-MS锆石U-Pb测年表明,巴嘎德尔基岩体侵位年龄为462.9±1.4Ma.该岩体地球化学方面表现出强过铝、高K、K/Na,低Mg、Fe、Ca的主量元素特征,并富集K、Rb、Ba、Th,亏损Zr、Hf、Y、Yb等微量元素,轻稀土富集,弱的Eu负异常.在微量元素判别图解上,所有岩石投影点均落入同碰撞区域.结合区域地质背景,认为巴嘎德尔基岩体是加里东造山作用晚期陆陆碰撞的产物.  相似文献   
82.
印度/亚洲汇聚-碰撞过程经历了新特提斯洋盆滋生、消减和俯冲、亚洲南缘增生造山以及印度/亚洲碰撞造山和青藏高原的隆升,在青藏高原南部和东南部造就了"冈底斯火山岩浆带"、"雅鲁藏布江缝合带"、"喜马拉雅碰撞造山带"和大量物质向南东逃逸的"三江侧向挤出地体群",以及相应形成具有重大找矿突破战略前景的"冈底斯成矿带"、"雅鲁藏布江成矿带"、"特提斯喜马拉雅成矿带"和"三江成矿带"。本文通过对四大成矿带的大地构造定格讨论了与资源前景相关的科学问题,提出"冈底斯成矿带"中的岛弧型斑岩铜金矿具有找矿的重大潜力、重视藏东—滇西地区的俯冲-碰撞型岩浆成矿专属性研究;提出扩大西藏罗布莎铬铁矿矿集区的开发规模,以及在西部阿里地区的大型超基性岩体中寻找新的铬铁矿远景地的思路;在三江多阶段成矿作用的叠合型矿床中,集中古特提斯和新特提斯成矿类型,关注与斜向碰撞有关的走滑剪切带对成矿作用的制约机制;需进一步确定特提斯喜马拉雅矿化带与藏南拆离系关系和重视始—中新世高Sr/Y花岗(斑)岩的成矿专属性及找矿前景。  相似文献   
83.
The Nuri Cu‐W‐Mo deposit is located in the southern subzone of the Cenozoic Gangdese Cu‐Mo metallogenic belt. The intrusive rocks exposed in the Nuri ore district consist of quartz diorite, granodiorite, monzogranite, granite porphyry, quartz diorite porphyrite and granodiorite porphyry, all of which intrude in the Cretaceous strata of the Bima Group. Owing to the intense metasomatism and hydrothermal alteration, carbonate rocks of the Bima Group form stratiform skarn and hornfels. The mineralization at the Nuri deposit is dominated by skarn, quartz vein and porphyry type. Ore minerals are chalcopyrite, pyrite, molybdenite, scheelite, bornite and tetrahedrite, etc. The oxidized orebodies contain malachite and covellite on the surface. The mineralization of the Nuri deposit is divided into skarn stage, retrograde stage, oxide stage, quartz‐polymetallic sulfide stage and quartz‐carbonate stage. Detailed petrographic observation on the fluid inclusions in garnet, scheelite and quartz from the different stages shows that there are four types of primary fluid inclusions: two‐phase aqueous inclusions, daughter mineral‐bearing multiphase inclusions, CO2‐rich inclusions and single‐phase inclusions. The homogenization temperature of the fluid inclusions are 280°C–386°C (skarn stage), 200°C–340°C (oxide stage), 140°C–375°C (quartz‐polymetallic sulfide stage) and 160°C–280°C (quartz‐carbonate stage), showing a temperature decreasing trend from the skarn stage to the quartz‐carbonate stage. The salinity of the corresponding stages are 2.9%–49.7 wt% (NaCl) equiv., 2.1%–7.2 wt% (NaCl) equiv., 2.6%–55.8 wt% (NaCl) equiv. and 1.2%–15.3 wt% (NaCl) equiv., respectively. The analyses of CO2‐rich inclusions suggest that the ore‐forming pressures are 22.1 M Pa–50.4 M Pa, corresponding to the depth of 0.9 km–2.2 km. The Laser Raman spectrum of the inclusions shows the fluid compositions are dominated in H2O, with some CO2 and very little CH4, N2, etc. δD values of garnet are between ?114.4‰ and ?108.7‰ and δ18OH2O between 5.9‰ and 6.7‰; δD of scheelite range from ?103.2‰ to ?101.29‰ and δ18OH2O values between 2.17‰ and 4.09‰; δD of quartz between ?110.2‰ and ?92.5‰ and δ18OH2O between ?3.5‰ and 4.3‰. The results indicate that the fluid came from a deep magmatic hydrothermal system, and the proportion of meteoric water increased during the migration of original fluid. The δ34S values of sulfides, concentrated in a rage between ?0.32‰ to 2.5‰, show that the sulfur has a homogeneous source with characteristics of magmatic sulfur. The characters of fluid inclusions, combined with hydrogen‐oxygen and sulfur isotopes data, show that the ore‐forming fluids of the Nuri deposit formed by a relatively high temperature, high salinity fluid originated from magma, which mixed with low temperature, low salinity meteoric water during the evolution. The fluid flow through wall carbonate rocks resulted in the formation of layered skarn and generated CO2 or other gases. During the reaction, the ore‐forming fluid boiled and produced fractures when the pressure exceeded the overburden pressure. Themeteoric water mixed with the ore‐forming fluid along the fractures. The boiling changed the pressure and temperature, oxygen fugacity, physical and chemical conditions of the whole mineralization system. The escape of CO2 from the fluid by boiling resulted in scheelite precipitation. The fluid mixing and boiling reduced the solubility of metal sulfides and led the precipitation of chalcopyrite, molybdenite, pyrite and other sulfide.  相似文献   
84.
The Miocene Qulong porphyry Cu‐Mo deposit, which is located at the Gangdese orogenic belt of Southern Tibet, is the largest porphyry‐type deposit in China, with confirmed Cu ~10 Mt and Mo ~0.5 Mt. It is spatially and temporally associated with multiphase granitic intrusions, which is accompanied by large‐scale hydrothermal alteration and mineralization zones, including abundant hydrothermal anhydrite. In addition to hydrothermal anhydrite, magmatic anhydrite is present as inclusions in plagioclase, interstitial minerals between plagioclase and quartz, and phenocrysts in unaltered granodiorite porphyry, usually in association with clusters of sulfur‐rich apatite in the Qulong deposit. These observations indicate that the Qulong magma‐hydrothermal system was highly oxidized and sulfur‐rich. Three main types of fluid inclusions are observed in the quartz phenocrysts and veins in the porphyry: (i) liquid‐rich; (ii) polyphase high‐salinity; and (iii) vapor‐rich inclusions. Homogenization temperatures and salinities of all type inclusions decrease from the quartz phenocrysts in the porphyry to hydrothermal veins (A, B, D veins). Microthermometric study suggests copper‐bearing sulfides precipitated at about 320–400°C in A and B veins. Fluid boiling is assumed for the early stage of mineralization, and these fluids may have been trapped at about 35–60 Mpa at 460–510°C and 28–42 Mpa at 400–450°C, corresponding to trapping depths of 1.4–2.4 km and 1.1–1.7 km, respectively.  相似文献   
85.
The distribution of REE minerals in metasedimentary rocks was investigated to gain insight into the stability of allanite, monazite and xenotime in metapelites. Samples were collected in the central Swiss Alps, along a well‐established metamorphic field gradient that record conditions from very low grade metamorphism (250 °C) to the lower amphibolite facies (~600 °C). In the Alpine metapelites investigated, mass balance calculations show that LREE are mainly transferred between monazite and allanite during the course of prograde metamorphism. At very low grade metamorphism, detrital monazite grains (mostly Variscan in age) have two distinct populations in terms of LREE and MREE compositions. Newly formed monazite crystallized during low‐grade metamorphism (<440 °C); these are enriched in La, but depleted in Th and Y, compared with inherited grains. Upon the appearance of chloritoid (~440–450 °C, thermometry based on chlorite–choritoid and carbonaceous material), monazite is consumed, and MREE and LREE are taken up preferentially in two distinct zones of allanite distinguishable by EMPA and X‐ray mapping. Prior to garnet growth, allanite acquires two growth zones of clinozoisite: a first one rich in HREE + Y and a second one containing low REE contents. Following garnet growth, close to the chloritoid–out zone boundary (~556–580 °C, based on phase equilibrium calculations), allanite and its rims are partially to totally replaced by monazite and xenotime, both associated with plagioclase (± biotite ± staurolite ± kyanite ± quartz). In these samples, epidote relics are located in the matrix or as inclusions in garnet, and these preserve their characteristic chemical and textural growth zoning, indicating that they did not experience re‐equilibration following their prograde formation. Hence, the partial breakdown of allanite to monazite offers the attractive possibility to obtain in situ ages, representing two distinct crystallization stages. In addition, the complex REE + Y and Th zoning pattern of allanite and monazite are essential monitors of crystallization conditions at relatively low metamorphic grade.  相似文献   
86.
A generalized additive model (GAM) was used to model the spatial distribution of snow depth in the central Spanish Pyrenees. Statistically significant non‐linear relationships were found between distinct location and topographical variables and the average depth of the April snowpack at 76 snow poles from 1985 to 2000. The joint effect of the predictor variables explained more than 73% of the variance of the dependent variable. The performance of the model was assessed by applying a number of quantitative approaches to the residuals from a cross‐validation test. The relatively low estimated errors and the possibility of understanding the processes that control snow accumulation, through the response curves of each independent variable, indicate that GAMs may be a useful tool for interpolating local snow depth or other climate parameters. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
87.
The MHD wave instabilities due to non-uniform magnetic field and non-homogeneity of density have been studied. The reference (coordinate) system considered here is cylindrical type. The General Dispersion Relation (GDR) for the wave propagation in a gravitating but non-relativistic region has been derived. Similar to common knowledge, the said non-uniformities have been found to be responsible for the instability of the system. But interestingly many instability factors are produced due to presence of two types of non-uniformities simultaneously. This theory may add more clues for the event of instabilities, formation of hot plasma-bed in Galactic Central Region, and mass out-flow from there. Many conditions for instabilities could be obtained from GDR deduced here. However, a few conditions for critical wavelength of the MHD wave have been obtained in terms of system parameters (like gradient of magnetic field and rotation). This theory, in turn, may be helpful for the better understanding of the Explosion Theory of formation of outer structure of Galaxies like ours.  相似文献   
88.
根据蓄冰中央空调的控制要求设计了一个基于西门子可编程逻辑控制器(PLC)的两级监控系统,现场工作站由PLC与触摸屏组成,作为现场监控及数据采集平台;管理工作站由工控计算机和打印机组成,作为主要的人机界面(HMI),除能打印数据及远程监控现场工作站外,还具有现场工作站的所有功能。实际运行结果表明,设计的监控系统能实时监视和控制蓄冰中央空调状态,有效地提高空调系统的制冷量及制冷效率。  相似文献   
89.
北京城市建设日新月异,以惊人的速度、超常的规模,黍列国际大都会行列。但800年古都、风韵犹存;本文论述对东西长安街和南北中轴线空间布局的棋盘格局;地铁选线与设计的乡土特色,古树名木的历史见证与城市记忆,为读者解读北京城市建设现代化过程中,体现历史文化传承潜规则的精彩与和谐。  相似文献   
90.
The glacially carved central coast of Maine is incised by river systems with interconnecting channels, offshore-trending submarine ridges, and narrow passages between nearshore islands and headlands. The tidal range exceeds 3 m, leading to complex and vigorous circulation patterns with strong flows in narrow channels, near river mouths, and between islands. The spongiform coastal morphology allows enhanced exchange between offshore waters, estuaries and internecine bays, resulting in rapid dispersal of nutrients, larvae and contaminants throughout the region. A fine-grid numerical circulation model has been used to examine the influences of the tides, river flows and winds on the dispersion of lobster larvae and pollutants in the nearshore and riverine environment. This paper describes the model application, presents a few salient features of the circulation patterns, and examines some implications for the coastal environment. For example, under realistic tides and variable southwest summer winds, about 80% of neutral near-surface particles introduced near the offshore islands (a proxy for stage IV lobster larvae from offshore sources) remain within a few km of the islands over a two-week period. On the other hand, a persistent, periodic sea breeze can remove more than two-thirds of the particles from the domain over the same period. Tidal mixing disperses pollutants entering the upper Kennebec River to the offshore and through internecine passages in about one week.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号